Алексей Опаев
Многие виды цветковые растений опыляются насекомыми. Поэтому довольно давно возникла мысль о возможности сопряженной эволюции этой группы растений и питающихся нектаром насекомых. То есть формы цветков становятся разнообразнее, появляются насекомые, морфология которых приспособлена для опыления тех или иных цветков, и т. п.
Подтверждают это разного рода «корреляционные» исследования, в которых показано, что некоторые особенности цветков соответствуют морфологии главных их опылителей. Речь идет, например, о длине хоботка насекомого и глубине венчика. Формальные филогенетические подходы, разрабатываемые на основе молекулярно-генетических методик (изучение последовательностей нуклеотидов в избранных генов), позволили даже оценить роль насекомых-опылителей в эволюции цветковых растений. По этим представлениям, около 25% событий видообразования в этой группы связано с «подстройкой» под опылителей.
Рис. 1. Цветки из двух популяций (с длинными и короткими пестиками — см. текст) и посещающие их насекомые. A — мушка с длинным хоботком Prosoeca longipennisпосещает «длинные» цветки с длинными пестиками: в этом случае рыльце пестика контактирует с брюшком насекомого. B — эта же мушка у цветка с коротким пестиком — она «ворует» нектар, так как длинный хоботок насекомого позволяет ему высоко зависать над цветком и не касаться пестика (пыльники у данного цветка искусственно удалены).C — медоносная пчела Apis mellifera (насекомое с коротким хоботком) на цветке с длинным пестиком — видно, что ее туловище не контактирует с репродуктивными органами цветка (на переднем плане). D — а при посещении пчелой цветков с коротким пестиком опыление возможно. Длина масштабного отрезка — 1 см. Рисунок из обсуждаемой статьи в Evolution
|
Но все эти данные, во-первых, ничего не говорят о механизме возникновения обсуждаемой связи. Именно о том, как протекали первые, микроэволюционные, ее этапы. А во-вторых, они не позволяют четко отличить причину от следствия. Не до конца ясно: именно растения, эволюционируя, «подстраиваются» под опылителей или насекомые просто посещают наиболее удобные для них цветы и/или эволюционируют под них. Здесь нужны более детальные исследования отдельных видов растений.
Такую работу выполнила группа ученых из ЮАР. Им удалось провести качественное и аккуратное исследование, посвященное самым разным сторонам взаимодействия одного вида растений с его опылителями. Именно разноплановость этой работы и делает ее очень интересной с точки зрения познания механизмов сопряженной эволюции цветковых растений и насекомых.
Ученые изучали растение Nerine humilis из семейства Амариллисовые (Amaryllidaceae), распространенное в Южной Африке. Каждый цветок этого растений имеет как пестики, так и тычинки. Но к самоопылению он не способен — поэтому для переноса пыльцы необходимы насекомые. Неспособность к самоопылению связана с интересными особенностями развития цветка, в котором можно выделить мужскую и женскую фазы (каждая из которых длится 3–7 дней). Мужская фаза начинается с появления пыльников и заканчивается отгибанием назад и постепенным отмиранием тычиночных нитей. После этого удлиняются столбики пестиков, а рыльце пестика становится рецептивным — начинается женская фаза. Таким образом, в конкретный момент времени цветок либо производит пыльцу, либо способен к оплодотворению. Нектарники располагаются у основания листочков околоцветника. Поэтому нектар легко доступен для насекомых вне зависимости от длины их хоботка (рис. 1). Как будет видно далее, эта особенность важна для интерпретации результатов исследования.
Ранее уже была известна межпопуляционная изменчивость в строении цветов этого растения. Собственно, это свойство и побудило ученых к более детальным исследованиям: их интересовала причина этого явления. Для детализации этой картины они измеряли 4 параметра в 11 популяциях (по 12–45 цветков в каждой из них). Эти параметры были таковы: (1) длина столбика пестика, (2) длина листочков околоцветника (которые функционально заменяют лепестки венчика), (3) объем нектара и (4) концентрация нектара. Измеряли только один цветок в женской фазе у каждого растения. Для параметров (3) и (4) при помощи микропипетки брали пробы рано утром, до начала посещений цветков теми или иными насекомыми. Кроме того, в каждой популяции наблюдали, какие именно насекомые и в каком соотношении посещают цветки (всего 10 часов наблюдений в каждой из 11 точек).
Выяснилось, что из изученных параметров цветов наиболее сильно варьировал первый — то есть длина пестика. В меньшей степени это относилось к длине листочков околоцветника. Эти две переменные были положительно скоррелированы. Оказалось, что 11 изученных популяций можно разбить на две группы: с длинными и короткими пестиками. У первых (8 популяций) средние длины столбиков пестиков были в пределах 21,6–29,3 мм, а у вторых (3 популяции) — 41,2–42,2 мм. Географическое распространение их показано на рис. 2. |